48 Ca(3 He,α),(pol 3 He,α) 1985Ha08,1978Fo34

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	T. W. Burrows	NDS 108, 923 (2007)	20-Feb-2007	

1978Fo34: E=25 MeV. Measured $\sigma(\theta=5^{\circ}-40^{\circ}, 5^{\circ})$ steps); magnetic spectrometer, focal-plane position-sensitive Si detectors. 1985Ha08: E=33.1 MeV. Measured $\sigma(\theta)$ and $A(\theta)$ ($\theta(C.M.)\approx10^{\circ}-110^{\circ}$); ΔE -E telescopes. Beam polarization=50-60%. All data are from 1978Fo34, except As noted. Both groups performed DWBA and CRC analyses. Others: see 1995Bu05.

⁴⁷Ca Levels

 Σ C²S>>3.55 for 2d3/2 hole states. Therefore, a large number of the L=2 states above 4.92 MeV may be identified as components of the 2d5/2 hole state which seems to be highly fragmented.

E(level)	${\rm J}^{\pi^{\frac{1}{7}}}$	L^{\ddagger}	C^2S^{\ddagger}	Comments
0.0	7/2-	3	5.42,6.94	J^{π} : from characteristic shape of A(θ) (1985Ha08).
	.,_			Main component of $167/2$. Using the isospin-dependent potential, $C^2S=87\%$ of
20146	2/2-	(4)	0.02.0.0:	shell-model sum rule.
2014 8	3/2-	(1)	0.03,0.04	M. 1 (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
2569 8	3/2+	2	1.74,2.23	Main component of $2d3/2(T<)$. Using the isospin-dependent potential, $C^2S=63\%$ of shell-model sum rule.
2591 8	1/2+	0	1.08,1.38	Main component of $2s1/2(T<)$. Using the isospin-dependent potential, $C^2S=78\%$ of shell-model sum rule.
				For the \approx 2.6-MeV doublet, A(θ) indicates that the 1/2 ⁺ member is weakly excited (1985Ha08).
2846 8				L: non-pickup character of $\sigma(\theta)$ discrepant with results from other pickup and stripping reactions.
3267 8	7/2-	$(3)^{\textcircled{0}}$	0.01,0.02	
3296 8	7/2-	$(3)^{@}$	0.03,0.04	
3423 8	7/2-	(3) [@]	0.10,0.13	
3566 8	9/2- &	#		
3844 8	7/2+,11/2-	#		J^{π} : 7/2 ⁺ from CRC analysis; assumed ((⁴⁸ Ca 3 ⁻) (ν 1f7/2) ⁻¹). 11/2 ⁻ from empirical arguments.
3877 8	5/2 ⁻ &	#		
3933 8	7/2-	(3) [@]	0.06,0.08	
3997 8	13/2	# ´	,	J ^π : From CRC analysis. 13/2 ⁻ if ((⁴⁸ Ca 3 ⁻) (ν 1f7/2) ⁻¹); 13/2 ⁺ if ((⁴⁸ Ca 4 ⁺) (ν 1f7/2) ⁻¹).
4050 8	1/2-	(1)	0.01,0.01	
4102 8	3/2+	(2)	0.03,0.05	
4205 8	9/2+	4	0.01,0.01	
4386 8	$7/2^{+a}$	# #		
4412 8		#		
4455 8		# #		
4531 8	$3/2^{+a}$	#		
4584 8	$5/2^{+a}$	#		
4611 8	$5/2^{+a}$	#		
4714 8	9/2 ⁻ &	#		
4785 8	5/2-	(3) [@]	0.01,0.01	
4810 8		#		
4880 8	13/2-	#		J^{π} : From CRC analysis. Assumed ((⁴⁸ Ca 4 ⁺) (ν 1f7/2) ⁻¹).
4918 8	9/2-&	#		
4960 8	5/2+	2	0.02,0.03	

⁴⁸Ca(3 He,α),(pol 3 He,α) **1985Ha08,1978Fo34** (continued)

⁴⁷Ca Levels (continued)

E(level)	J^{π} †	L [‡]	C^2S^{\ddagger}
4980 8	5/2+	2	0.14,0.20
5053 8	$7/2^{+a}$	#	
5189 8		#	
5245 8	5/2+	2	0.01,0.01
5293 8	5/2+	2	0.08,0.12
5448 8	5/2+	2 #	0.14,0.19
5550 8		#	
5588 8			
5641 8		#	1
5785 8	1/2+	0	0.04,0.06 ^b
5875 8	5/2+	2 #	0.02,0.03
5916 8			
5963 8	~ (a.t	(3) [@]	0.01,0.01
6065 <i>15</i> 6127 <i>15</i>	5/2 ⁺ 5/2 ⁺	2 2	0.20,0.28 0.02,0.03
6158 15	3/2	2	0.02,0.03
6254 15	5/2 ⁺	2	0.12,0.17
6291 <i>15</i>	5/2+	2	0.05,0.07
6467 <i>15</i>	5/2+	2	0.08,0.12
6524 15	5/2+	2	0.03,0.04
6610 <i>15</i> 6635 <i>15</i>	5/2 ⁺ 5/2 ⁺	2 2	0.02,0.03
6670 <i>15</i>	5/2 ⁺	2	0.10,0.14 0.05,0.07
6719 <i>15</i>	7/2-	(3) [@]	0.01,0.01
6760 15	7/2-	(3) [@]	0.02,0.02
6883 15	7/2-	(3) [@]	0.02,0.02
6920 15	5/2 ⁺	(2)	0.03,0.04
7024 15	3/2	(2)	0.01,0.01
7063 15	7/2-	(3) [@]	0.03,0.04
7117 <i>15</i>		#	
7151 15	5/2+	2	0.10,0.15
7305 15	5/2 ⁺	2 2	0.07,0.09 0.08,0.10
7415 <i>15</i> 7499 <i>15</i>	5/2 ⁺ 5/2 ⁺	2	0.08,0.10
7545 15	3/2	#	0.11,0.13
7642 15			
7679 15			
7736 15	5/2+	2	0.03,0.05
7785 15		#	
7842 15			h
7893 ^C 15	1/2+	0	$0.03, 0.04^{b}$
7893 ^c 15 7954 15	5/2 ⁺ 5/2 ⁺	2 2	0.01,0.02 0.03,0.04
7995 15	3/2	#	0.03,0.04
8021 15	1/2+	0	0.02,0.03 ^b
8121 15	1/2+	0	0.02,0.03 $0.02,0.03$
8121 <i>13</i> 8264 <i>15</i>	1/2	(3) [@]	0.02,0.03
8301 <i>15</i>	5/2 ⁺	2	0.03,0.04
8352 15	5/2 ⁺	2	0.02,0.04
8380 <i>15</i>	1/2+	0	$0.04, 0.05^{b}$
8447 15			

48 Ca(3 He, α),(pol 3 He, α) 1985Ha08,1978Fo34 (continued)

⁴⁷Ca Levels (continued)

E(level)	J^{π}	L [‡]	C^2S^{\ddagger}	Comments
8595 ^c 15	$1/2^{+}$	0	0.01,0.01 ^b	
8595 ^c 15	5/2+	2	0.01,0.02	
8669 ^c 15	$1/2^{+}$	0	0.01,0.01 ^b	
8669 ^c 15	5/2+	2	0.03,0.04	
8748 ^c 15	$1/2^{+}$	0	0.01,0.01 ^b	
8748 ^c 15	5/2+	2	0.02,0.03	
8902 <i>15</i>				
8995 15			1.	
9124 <i>15</i>	1/2+	0	0.02,0.03 ^b	
9230 15	$5/2^{+}$	2	0.03,0.04	
9271 <i>15</i>	7/2-	(3) [@]	0.02,0.03	
9341 <i>15</i>	$1/2^{+}$	0	$0.02, 0.02^{b}$	
9451 <i>15</i>	$1/2^{+}$	0	$0.02, 0.03^{b}$	
9545 <i>15</i>	$5/2^{+}$	2	0.05,0.07	
9612 15	5 /O+	2	0.04.0.05	
9678 <i>15</i>	5/2+	2	0.04,0.05	
9720° 15	1/2+	0	0.01,0.01 ^b	
9720 ^c 15	5/2+	2	0.01,0.01	
9776 ^c 15 9776 ^c 15	1/2+	0	0.01, 0.01	
9776° 13 9830 <i>15</i>	5/2+	2	0.01,0.02	
9924 15				
9978 15	5/2+	2	0.06,0.08	
10056 15	5/2+	2	0.04,0.06	
10182 <i>15</i>	5/2+	2	0.06,0.08	
10238 15	- /a-t		0.00.0.10	
10302 15	5/2 ⁺	2	0.09,0.13	
10358 <i>15</i> 10431 <i>15</i>	5/2 ⁺ 5/2 ⁺	2 2	0.09,0.12 0.08,0.11	
10431 15	5/2 ⁺	2	0.03,0.11	
10581 15	5/2 ⁺	2	0.07,0.11	
10640 <i>15</i>	$5/2^{+}$	2	0.06,0.09	
10680 <i>15</i>	5/2+	2	0.06,0.09	
10765 ^c 15	$1/2^{+}$	0	0.07,0.10 ^b	
11003 <i>15</i>	$5/2^{+}$	2	0.11,0.16	
11187 15				
11580 <i>15</i> 11826 <i>15</i>				
12745 15	1/2+	0	0.26,0.18	T=9/2
12/73/13	1/2	U	0.20,0.10	$IAR(1/2^+, g.s., {}^{47}K).$
13103 <i>15</i>	$3/2^{+}$	2	0.74,0.46	T=9/2
	,		,	IAR(3/2 ⁺ , ^{360, 47} K

 $^{^{\}dagger}$ Assumed for DWBA analysis, except as noted. ‡ From DWBA analysis. The first C^2S value is based on the separation-energy method; the second, on an isospin-dependent

[#] $\sigma(\theta)$ exhibits a non-pickup character.

[@] Agreement between theory and experiment is generally bad for L=3 transitions. & From CRC analysis. Assumed (48 Ca $^{2+}$)(ν 1f7/2) $^{-1}$).

48 Ca(3 He, α),(pol 3 He, α) 1985Ha08,1978Fo34 (continued)

⁴⁷Ca Levels (continued)

- a From CRC analysis. Assumed ((^48Ca 3^-)(ν 1f7/2)^-1). b These states account for $\approx\!25\%$ of the 2s1/2(T<) strength.
- ^c Doublet.